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Stability Derivatives for a Hypersonic Caret-Wing Waverider

Christopher Tarpley* and Mark J. Lewist
University of Maryland, College Park, Maryland 20742

Analytical expressions for the longitudinal and lateral stability derivatives of caret-wing waveriders flying
on-design are calculated using linear piston theory. The calculations are extended to off-design conditions with
an attached shock wave using tangent wedge theory. The experimental work of Kipke is used to validate the
lift and pitch stiffness coefficients. Agreement within 8% is achieved at a Mach number of 7.9 and a Reynolds
number of 2.7 x 106. Good agreement is also found with the analytical work done by Hui. The stability
derivatives of a Mach 6 waverider are computed, and it is found to have negative pitch and yaw stiffness with
the e.g. at the center of volume.

Nomenclature
a = speed of sound, m/s
b = span of planform, m
CD = drag coefficient,
CL = lift coefficient,
C, = rolling moment coefficient about x-body

axis, L/[q»S(b/2)]
Cm = pitching moment coefficient about y-body

axis, M/[q»S(c/2)]
Cn = yawing moment coefficient about z-body

axis, N/[q»S(b/2)]
Cx — force coefficient along jc-body axis, X/(q^S)
CY = force coefficient along y-body axis, Y/(qxS)
Cz = force coefficient along z-body axis, Z/(qxS)
c = length of topline, m
c = mean aerodynamic chord, m
L,M,N = rolling, pitching, and yawing moments,

N - m
Mx = freestream Mach number
n — surface normal unit vector
p, q, r = perturbation roll, pitch, and yaw rates,

rad/s
p*, (7*, r* = nondimensional perturbation roll, pitch,

and yaw rates, rad/?* = pbl(2Vv),
q* = qc/(2VJ, r* = rb/(2VJ

qy. = dynamic pressure, N/m2

r = surface position vector, m
5 = planform area, m2

T = temperature, K
u, v, w = perturbation velocity components along the

body axes, m/s
V = velocity, m/s
X, 7, Z = components of force along the body axes,

N
a = angle of attack, rad
j8 = angle of sideslip or shock wave angle, rad
F = angle defining caret-wing, rad
6 = caret-wing wedge angle, rad
A = angle defining caret-wing, rad
p = density, kg/m3
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Subscripts
I = component on lower surface
Ix, /y, /z = lower surface component in jc, y, or z

direction
p = partial derivative with respect to /?*,

Clp = dC,/dp*, rad"1

p, q, r = component due to rolling, pitching, or
yawing motion

q = partial derivative with respect to q*,
Cnu, = dCJdq*, rad-1

r = partial derivative with respect to r*,
Clr = dC//dr*, rad-1

u = component on upper surface
u, v, w = component due to u, v, or w motion
ux, uy, uz = upper surface component in x, y, or z

direction
x-w = Ac-direction component due to w motion
y — w- = ^-direction component due to w motion
z - w = z-direction component due to w motion
a = partial derivative with respect to a,

Q,« = dCJda, rad-1

j8 = partial derivative with respect to /3,
Cy/3 = dCy/d/3, rad-1

0 = on-design angles defining the
caret-wing

= flow properties behind shock
= freestream flow properties

Introduction

M UCH work has been done on the aerodynamic perfor-
mance of waveriders. Waverider shape optimization

was started by Bowcutt.1 O'Neill2 optimized the integration
of scram jet engines with the waverider shape, and Takashima3

used computation fluid dynamics (CFD) to check the off-
design performance. The next step towards a practical wave-
rider is inclusion of the stability and control characteristics in
the shape optimization. The methodology described here will
provide the basis for calculating the stability derivatives of
the waverider.

The calculation of stability derivatives requires the analysis
of the unsteady flow over the vehicle. Jones4 and Ribner5

pioneered this work using potential theory over slender bodies
in subsonic and low supersonic flow. Polhamus6 improved the
theory with leading-edge suction to include the effect of the
vortex formed by the swept leading edge. Hui7 has done much
work in the area of hypersonic stability. He developed a wedge
perturbation theory that has been used in hypersonic flow to
compute longitudinal stability derivatives. Liu8 extended this
work to the case of delta wings with attached shocks. A sim-
pler theory called piston theory was proposed by Lighthill9
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for use in high Mach number flows, M > 4. Piston theory is
based on the idea that in a two-dimensional flow, a perpen-
dicular column of fluid remains intact as it passes over a solid
surface. This is because the characteristic lines of the flow are
almost parallel to the flow, and so disturbances in the stream-
wise direction are very small. As a result, the pressure at the
solid surface can be calculated as if the surface were a piston
moving into a one-dimensional column of fluid.

Piston theory is particularly useful because it equates the
disturbance pressure on the surface to the normal surface
velocity. As a result, the stability derivatives can be obtained
by a single calculation once the steady surface pressure is
known. A common alternative is to use a finite difference
formulation to calculate the needed derivatives. In the context
of an optimization problem, a finite difference requires more
function evaluations and may also cause convergence prob-
lems for the optimizer.

This article presents a new extension of linear piston theory
to the derivation of analytical expressions for the stability
derivatives of a specific highlift hypersonic configuration, the
caret-wing waverider. Although piston theory is not a new
idea, there has been no comprehensive application of piston
theory to a derivation such as is done here. These expressions
can be used in both the on-design and off-design conditions.
A simple modification described by Tarpley and Lewis10 could
extend these piston theory results to supersonic Mach num-
bers for off-design calculations.

Caret-Wing Geometry
The coordinate system and the geometry of the waverider

are shown in Figs. 1 and 2. The vehicle geometry is charac-
terized by the "wedge" angle 0() that the undersurface cen-
terline makes with the freestream flow direction. Given the
flight Mach number M^, the shock angle ft, is calculated from
the 0 - f3 - M relation from oblique shock theory. The
leading edge of the caret-wing is chosen to be in the plane of
this shock, and so the shock wave is attached to the leading
edge. This Mach number is referred to as the "design" Mach
number. The body axes are a body-fixed coordinate system
with their origin at the e.g. of the vehicle. The x axis is aligned
with the upper surface of the caret-wing, which is aligned with
the freestream flow of the design condition. The x-z plane is
a plane of symmetry of the aircraft. We can calculate the
inviscid flow properties on the undersurface exactly from the
oblique shock relations. The upper surface is aligned with the
freestream and the flow properties there are also known. The
angles A() and F() define the angles of the upper and lower
surface, respectively, and are connected to the vehicle ge-
ometry by

MOO

tan A() = 2c tan f3()/b

tan T() = b/2c(tan ft, - tan 00)

The volume of the caret-wing is

volume = be2 tan 0()/6

(1)

(2)

(3)

The e.g., assuming constant density throughout the volume
of the caret-wing, is coincident with the center of the volume,
and its position is given by

z Jc = (tan 0() + tan ft,)/4

(4)

(5)

The mean aerodynamic chord is c = fc, and the planform
area in the x-y plane is S = bc/2.

Analysis
Linear piston theory can be used to estimate the stability

derivatives of caret-wing waveriders. On the upper surface,

Fig. 1 Caret-wing body fixed coordinate system.

Fig. 2 Caret-wing geometry.

the surface will be modeled as a piston moving into a column
of fluid that has the properties of the freestream. On the lower
surface, the surface will be modeled as a piston moving into
a column of fluid that has the properties of the fluid behind
the oblique shock created by the caret-wing. The basic result
from linear piston theory is

* surface = 'stead Psteady^s eady ' surface (6)

where the subscript "steady" refers to the steady flow con-
ditions past the surface, and Vsurface refers to the velocity of
the surface normal to the steady flow. Equation (6) comes
from keeping the first two terms of the binomial expansion
of

&-.|I + » -
'steady

vt
steady

The infinitesimal force due to this pressure is

dF - -Psurtaced^w

(7)

(8)

where dA is the surface element, and n is the outward normal
direction.

For the calculation of stability derivatives, we will consider
small perturbations from a steady flight condition at Mx. The
perturbations considered will be the velocities u, v, and w
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and the rates /?, q, and r. The velocity of a point on the upper
surface due to these perturbations is

Vtl = + u)i + vj + wk + t*> x ru (9)

On the lower surface, we use the flow conditions behind the
oblique shock wave. These conditions are calculated with the
oblique shock relations. The velocity of a point on the lower
surface of the vehicle is

V, = (V2 cos 0() + u)i + vj + (w - V2 sin 9(})k + co x r,
(10)

where w is the vector w = pi + qj + rk.
The position of a point on the upper surface is given by the

vector

ru = rllxi + ruyj + ruzk (11)

with surface normal vector

nlt = nuxi + nliyj + nuzk (12)

and the lower surface position vector is

(13)

(14)

r, = rlx

with surface normal vector

n, = n,xi + n,yj + n,,k

By substituting the dot product of Eqs. (9) and (12) into Eq.
(6), and then substituting this combined expression into Eq.
(8), the infinitesimal force at a point on the upper surface can
be written as

dF,, = {-P^ -

+ (v + ri/vr ~

u . + ruzq - ruvr)nllx

w 4- rtiyp - rlixq)nll7]} dAltnlt

(15)

Similarly, by substituting the dot product of Eqs. (10) and
(14) into Eq. (6), and then substituting this combined expres-
sion into Eq. (8), the infinitesimal force at a point on the
lower surface can be written as

dF/ = {-P2 - Pia2[(^2 cos 0() + w + rlzq - rlyr)nlx

+ (v + rlxr — r/zp)n/y + (w - V2 sin 9(} + r,vp

~ r/.v?)*/J} dA,n, (16)

The upper surface element &Auntl can be written as

d/4,,11,, = (n,J + ninj + nllzk) dAu (17)

The lower surface element can be written

dA,n, = (n,xi + n,J + nlzk) dA, (18)

Caret- Wing Integration
The previous equations will now be specialized for a caret-

wing in the positive y space. Because of the vehicle symmetry,
the integrations can be done in the positive y space only. The
position vector of a generic point on the upper surface with
respect to the e.g. is

rtl = xi + yj + (- zc.g. + y tan
where — (c — *c g ) < x ^ Jtc-g.

0 < y < -(b/2c)(x - *c.g.)

the position vector of a generic point on the lower surface
with respect to the e.g. is

r, = xi + yj + [~z c g + y cot T() + (xcg - *)tan 0()]k

where - (c - *c.g.) < x < *c.g.

0 < y < -(/>/2c)(;t -*c.g.) (20)

The normal surface vectors are given by

«„ = Oi + sin \j - cos A()A: (21)

n, = sin 0() sin ro//i - cos 00 cos r()//y + cos 0() sin ro//Jfc
(22)

where / is

/ = Vsin2F0 + cosT() cos200 (23)

When the surface element dAn is projected onto a plane
for performing the integrations, care must be taken with the
signs of the differential elements. The transformations that
project the surface element onto the various planes are sum-
marized next with the integration limits. Note that on the
upper surface nllx is zero:

nllv dAlt — dx dz, ~(c — *c.g.) ^ x ^ xcg_
-zc,g. < z < -zc,g. + (jcc.g. - x)tan j8() (24)

< - —- y - 2c
 c-s-^ (25)

n,, dA, = dy dz, 0 < y < -, -zcg tan A()

< z < - zc g + c tan 00 + y cot T() (26)

nly dA, = -dx dz, -(c - xc_&) < ̂  < jcc.g.

Zc., i \-^c p -^Jtan t/0 — z — ZG „

+ (jct,g. - jc)tan A) (27)

/7/z d^4/ = d* dy, -(c — jccg) < x < jccg

A; (* - ^c.J (28)

To calculate the various aerodynamic coefficients, the ap-
propriate pieces of the infinitesimal expressions in Eqs. (15)
and (16) are integrated over the surface of the caret-wing.
The base pressure is assumed to be P^ for the purposes of
these calculations, but it only contributes to the Cx and Cm
coefficients. Linear piston theory is not used on the rear sur-
face. Note that skin friction is not included in these calcula-
tions. The derivatives calculated pertain to step perturbations
from straight and level flight.

Z-Force Coefficient: C7

The steady Z-force coefficient is calculated by integrating
the components of the infinitesimal force expressions related
to the steady flow over the surface of the caret-wing. Note
that the contribution from the term on the upper surface
containing V^ disappears because nllx is zero on the upper
surface, and the terms containing V2 on the lower surface
cancel each other:

(19)
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As noted previously, because of the symmetry of the caret-
wing, the integration is done in the positive y space only and
the integral multiplied by a factor of two. This occurs through-
out the remainder of the analysis and will not be mentioned
explicitly. The surface differential area is replaced by the
corresponding differential area when it is projected into the
coordinate plane:

q^S [_J J ^ J J '
D, - PJ f^-8- f-(b/2c)(X-Xc^^sL-^L dy

2ft - (30)

This is a familiar result from two-dimensional oblique shock
theory. It is the negative of the pressure coefficient on the
lower surface of an infinite plate at angle-of-attack 00.
A'-Force Coefficient: Cx

The steady X-force coefficient is given by

and for a caret-wing

Cx = Cz tan

(31)

(32)

In this case, the base pressure has been put into the integration
explicitly. The x component of the infinitesimal force on the
upper surface is 0.
Lift-to-Drag Ratio: LID

The inviscid lift-to-drag ratio in the steady flight condition
with a = 0 is given by — CZ/ — CX, which is equivalent to

LID = cot 0()

Pitch Moment Coefficient: Cm

The steady pitching moment coefficient is given by

C,,,=
1 z(dF)A.steady - x(dF))z.SK.ady \

(33)

(34)

and for a caret-wing

Cm = -CJ3[(jcc.g./c) - i] - tan2fl0

- tan j80 tan 0() + 3 tan du(z Ic)} (35)

In this case, the base pressure has also been put into the
integration explicitly. The x component of the infinitesimal
force on the upper surface is 0.
a Derivative of Z-Force Coefficient: C7ct

The change in the Z-force coefficient due to a change in
angle of attack is calculated by integrating the component of
the infinitesimal force expression that contains the vertical
velocity perturbation w:

nuz cL4lf)

J J P2a2ni2w(nl2 (36)

For a caret-wing

(Cz)w = — T; (p*fl*fluz ~ P2a2nlz)w &c dy (37)^tj J J

If w/V^ « 1, then wIV^ = a, and the previous equation can
be written

z), = ——„ \ \ (p*flJiuz ~
Coo>5 J J

and so

This integral yields

dCz 2

^a dx dy (38)

(39)

(40)

a Derivative of A'-Force Coefficient: CXat

The change in the A'-force coefficient due to a change in
angle of attack is calculated from

(41)

It can also be obtained directly by differentiating the expres-
sion for Cx with respect to a to get

<42>
a Derivative of Pitch Moment Coefficient: Cm(X

The change in pitch moment coefficient due to a change in
angle of attack can be calculated from the contribution of the
forces due to a velocity w in the z direction:

-J J [- p^wnu!(n,l2 <L4,,) - p2a2wn,2(nlz dA,)]

(43)

The detail will be left out for the rest of the derivatives. Only
the base expression and the integration result will be quoted.
For a caret-wing

da

- tan 0()

i ^ r / £ _ 5
z tan j80 + tan 0(

7 /2 x\± I* _ XCA
4V \3 c

(44)

q* Derivative of Z-Force Coefficient: CZq

If the caret-wing undergoes a pitching motion about its e.g.,
the velocity of the surface due to this motion will give rise to
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a change in the surface pressure according to piston theory.
The Z-force coefficient due to a pitching motion is

- J J P2«2(O=«A- - r/xn/z)(n,z cL4,) \q (45)

and for a caret-wing integrating this gives the expression

* x = - — J=r TT ( 2 tan A) + 2 tan 00

^r* Derivative of Pitch Moment Coefficient: C,/I(?
If a caret-wing undergoes a pitching motion, there will be

an induced pressure component on the surface due to the
pitch rate q. This moment perturbation can be calculated from

J J xpyayru,nllz(nllz dAtl)

J J xp2a2(rtsnlx - rlxnh)(nlz cL47) g (47)

For a caret-wing integrating this gives a polynomial in (;tcg /
c), and (zcg /c):

D^
ĉ

(48)

where

tan /3() tan 0()^ = -9 0, - 03 4- a2 —-— + a2 ———

tan )8() tan 0() tan2j8() tan 0() tan20()——— - ——— + a2 ——— - ——— + a, ——

(49)

B = 24 - a, + a2
tan 0()

tan j8() tan 0()

C = -18(0, - 03)

(50)

(51)

D = '.-, + a, tan 0,, + a, tan /3(l tan 0,, + a2 tan20(l)
(52)

E = - 18a2 tan 00

F - -18(0, tan 0() + a2)

(53)

(54)

(55)

(56)

0.1 = «,,.-/M, (57)

j8 Derivative of Side Force Coefficient: CYI)

If the caret-wing experiences a velocity in the y direction,
it will experience a side force that can be calculated from

(58)

(tan /30 - tan 0(1)

(59)

We have used the fact here that if (v/VQ « 1, then (v/VJ

/8 Derivative of Roll Moment Coefficient: C//?

The caret-wing will experience a rolling moment in response
to a velocity in the y direction. The moment perturbation can
be calculated from

(Cy),. = -^j\ (dF)y-.

Performing the integration gives

dCY —4c \nm, tan f3(} p2 lT2 nlv

Carrying out the integration yields

8c2tan j3(/i<fv A, -

2 /7\ 8c2( —tan /3() + tan 0())/?/v

x tan j8() + tan 0() - 3 -^ (61)

/3 Derivative of Yaw Moment Coefficient: CH/3

The caret-wing will experience a yawing moment in re-
sponse to a velocity in the y direction that can be calculated
from

(62)

Integrating this expression gives

dC,, n^_ 8c2tan jS0 /2 _ x^
" ~ ~ ~

1 2 8c2 / 2
- tan 0() + — (-tan ft, + tan 0()) I -

This is the weathercock stability derivative.

(63)
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p* Derivative of Side Force Coefficient: CYp

The side force generated by a rolling motion is given by

(64)

Integrating this yields

dCY _ 4c2_tan_ft)

32 FT2 4c2(tan ft, - tan

r*b1"x - nlz - 2«/>,(tan j80 + tan e0) s-] (65)

* Derivative of Roll Moment Coefficient: Clp

The damping-in-roll moment can be calculated from

(66)

Integrating this gives

dC, -1 "48c-X,v tan ft, /*C.B\2

4cnllv _ 8c2ntlz tanft, 32c3/y tan2ft,\ /z^
" I b b2 b3

2cnuv tan
———

_ /«/z
M « 3

c2w / /7 tan2ft} 8c3wliy tan3ft,
——— + ——— ———

tan ft,

I/V tan 0()

„. . -24c2nly /z c gx (tan ft, - tan 0()) \ ——j-^ I-^

2c

I b
ft, + tan 00

7/. tan ft, _ 4c2n/3> tan2ft, CAZ/Z tan 0()

4c2n/v tan 0() tan ft, _ 4c2nly tan200

~ (67)

p* Derivative of Yaw Moment Coefficient: Cnp

Cnp is an example of the cross coupling that occurs in the
lateral motion between yawing and rolling motions. It can be
calculated from

Integrating this yields

dCn =

d(pb!2VJ ~

_ CM/3. tan <
b

x (3«fe -

tan 00
/2

; tan j
"6

2c2(tan ft) - tan 00)

i,., tan jS0 6cn/v tan 0() xc „
_J__—————— _ ————L.^—————— _ 4^^ _ :̂

L> L> C

8c^z/v tan ft, jcc g 8cn/3, tan 00 jcc g

b e b e

^x^z^\] _ 2c2 tan ft
c c

x ^ 6cnt<y tan ft,
•Jftitz • ,

,/v tan ft, ^cg

b c
16cnuy z^ 24cnliy x^ zc.8\

6 c + 6 c c /
(69)Vu:?;

r* Derivative of Side Force Coefficient: CYr

The side force generated by a yawing motion is given by

Integrating this gives the expression

dCy^ _ Sc2nliy tan ft, (2 _ x^,
3~ ~7

P2 rr2 4c
( r /

x | (tan ft, - tan 0()) nlx + -^ (- - —
I L *> \3 c

(71)
r* Derivative of Roll Moment Coefficient: Clr

C,,. is another example of the cross coupling between yawing
and rolling motion. It is calculated from

Integrating this yields

dC, - 4cn
3bM

ny_ [3 _ X^

, [4 c
c2 tan ft

x 3 tan ft, - 4 tan ft, -^ - 8 -^ + 12 -^
c c c

+ P2 IT2 1 I AZ7,
36 c

2c2(tan ft, - tan 0()) / 6cnlv tan ft.

- «/A. tan 0() —

/v tan 00 zc,

3b2 \ b

6cnly tan 0(, 8c/t/y tan ft) jcc

- 2nlx tan /30

-r
c.g.

-f H-W/V -I-c c b e

(73)
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r* Derivative of Yaw Moment Coefficient: Cnr

If the vehicle undergoes a yawing motion, the damping-in-
yaw coefficient can be calculated from

1 *(<tfV, - // (74)

Integrating this yields

3C,, _ -Sc-Xiy tan j8()
c2 c

tan 0n / 3crc/v"/.v + -r^
4c^z/v

6

2c 2 ( tanf i ) - tanc9 ( ) ) _
'

32c/t/v ^cg-

b c
24cnly *2

b c2 (75)

Calculation of C, and CLa

The work that is used to validate these results requires the
computation of coefficients in the wind axes. These coeffi-
cients are related to the coefficients in the body axis system
for a = 0 as follows:

CL = -

, = - cza

(76)

(77)

Hypersonic Limit
A criticism of piston theory is that it does not reduce to the

correct limit as M^ —> °° and y —> 1, as does oblique shock
theory that reduces to the Newtonian result. However, in
the present work, piston theory is being applied behind the ob-
lique shock created by the caret-wing, and, as a result, the
expressions for Cz, Cx, and Cm do reduce to the correct
limit. In fact, piston theory is not being used to calculate
these three coefficients as is normally done when it is applied
to the freestream flow. It is interesting to evaluate the hyper-
sonic limit of the stability derivatives that are calculated with
piston theory. In each derivative, there are terms from the
integration over the upper surface that contain (1/M*).
These terms drop out as M^ —> °°, thus giving the result that
at high Mach numbers for the vehicles with attached shock
waves, the upper surface contribution is negligible. The terms
on the lower surface contain (p2/poc)V(T2/Toc)(l/Moc). In the
limit of M-s_ -+ so, this term tends to the finite value of
V[2y sin2/V(y ~~ !)]• Therefore, in the hypersonic limit, these
derivatives are finite. If the further limit of y —> I is taken,
the derivatives are singular. However, as an engineering tool,
these expressions are perfectly valid and indeed are good
approximations to the stability derivatives; y does not ap-
proach unity in most flow situations of interest.

Validation
The results of the present theory have been partially vali-

dated by comparison with the experimental results of Kipke.11

Kipke measured the performance of several caret-wings with
design Mach numbers of 6, 8, and 10 at flight Mach numbers
from 7.9 to 15.5. We have compared C,, CLa, Cm, and Cma
from Eqs. (76), (77), (34), and (44), with his results for wing
number 2 (design Mach number of 8) flying at Mach 7.9 and
Reynolds number 2.7 x 106. The results are summarized in
Table 1. Agreement to within 8% is obtained for the on-
design condition. The error listed for the experimental data
is related to measuring the coefficients from the published
graphs; no experimental error was indicated in the published

Table 1 Comparison of linear piston theory and Kipke
experimental results (a = 0)

Coefficient Experiment Piston theory Difference
c,
C,,,"
c,,,h
C,,M"-h

0.065 ± 0.002
0.886 ± 0.010

-0.124 ± 0.002
-1.687 ± 0.031

0.060
0.887

-0.117
-1.823

-8%
0%
6%

-8%
:1Pcr radian.
''Moments arc taken with the e.g. at the nosetip of the caret-wing.

00 = 20°
_M = 17

(per radian)
-0.50

Wedge Perturbation
Piston Theory

xcg/c
Fig. 3 Cmq, comparison of piston theory and Hui's wedge pertur-
bation theory.

(per radian)
-0.5

00 = 20°
M =17

Piston Theory
Wedge Perturbation

-1.5 I——
0.00

-1.5
1.00

Fig. 4 comparison of piston theory and Hui's wedge pertur-
bation theory.

reports. Using the theory developed by Hui12 to calculate Cma
for this caret-wing yields the result - 1.433, 15% larger than
the experimental value of -1.687. This difference is attrib-
uted to the fact that Hui's formula only accounts for forces
on the lower surface; inclusion of the upper surface would
lead to a smaller value.

The present formulation has also been compared to Hui's12

results for a Mach 17 caret-wing with wedge angle, 00 = 20
deg. The values of Cmtl and C,na are compared in Figs. 3 and
4. As can be seen, agreement is fairly good. The well-known
quadratic behavior of Cmcj is duplicated very well. In these
figures, the value of ;ccgJc is the location of the vehicle e.g.
in Hui's axis system, which has an axis along the lower surface
ridgeline. For the sake of comparison, the e.g. was forced to
be on this ridgeline. Hui's theory ignores the small term as-
sociated with zc g , but the piston theory formulation does not.
With the e.g. on the lower surface ridgeline, the two theories
are calculating the same value. The piston theory coefficient
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was modified to exclude the upper surface, as does Hui, and
conform to the nondimensionalization used by Hui. As ex-
pected, the piston theory overpredicts the pressure on the
surface. Hui's theory includes the effects of reflected waves
between the body and the bow shocks that weaken the pres-
sure field. Hui compared his theory to experimental work by
Pugh and Woodgate13 for low Mach numbers (1.75 and 2.47)
and found good agreement.

Off-Design Calculation
The previous results are for a caret-wing that is flying at

its design Mach number. When the caret-wing is flying at off-
design conditions, the flow is no longer completely two di-
mensional. If the flight Mach number is lower than the design
Mach number, the shock moves away from the body, but
stays attached to the leading edge. If the Mach number is
greater, the shock moves toward the body as shown in Fig.
5. For the case of a flight Mach number greater than the
design Mach number, we make the assumption that the flow
stays two dimensional and that the turning angle of the flow
continues to be the wedge angle of the on-design caret-wing.
This assumption overpredicts the pressure on the outer por-
tion of the caret-wing. The values predicted using this as-
sumption are compared to Kipke's model 2 flying at higher
Mach numbers in Figs. 6-9; agreement within 10% is achieved
for most data points.

In Fig. 6 the value of the Newtonian limit for CL has been
plotted. The value of CL predicted by the present work and
the experimental data appear to be asymptotically approach-
ing a higher value. This is not unexpected because y = 1.4
for this flow. If only the high Mach number limit is applied
to the expression for CL for Kipke's wing 2, the expected limit

Moo< Mdesign

Fig. 5 Caret-wing shock structure, on- and off-design (after Ref.
H).

0.000

Present Work

Design Condition Wing 2

Kipke Experimental Data
M=7.9 X]=.3
M=10.9 X=1.7
M=13.6 X"=5.5
M=15.5

Newtonian Limit

10 15

Mach Number
Fig. 6 CL9 comparison of Kipke experimental data and off-design
calculation.

CLa

(per radian)

Present Work

Design Condition Wing 2

Kipke Experimental Data

M=13.6 X=5.5
M=15.5 X=9.9

0 5 10 15 20 25

Mach Number
Fig. 7 C/tt, comparison of Kipke experimental data and off-design
calculation.
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- Present Work
Design Condition Kipke Wing 2

Kipke Experimental Data

CG at nosetip of caret-wing

0 5 10 15 20 25

Mach Number
Fig. 8 C,M, comparison of Kipke experimental data and off-design
calculation.
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(per radian)

-1.5

D
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Present Work

Design Condition Kipke Wing 2

Kipke Experimental Data

CG at nosetip of caret-wing

0 5 10 15 20 25
Mach Number

Fig. 9 Cm(X, comparison of Kipke experimental data and off-design
calculation.

is 0.044, which corresponds to the present work and experi-
mental data. As can be seen in Figs. 7 and 9, these coefficients
approach a finite limit as Mach number increases as expected
because y = 1.4 for this flow.

Mach 6 Waverider Stability
As an example of the results obtained from the present

theory, the coefficients have been calculated for a Mach 6
waverider with a wedge angle of 4.69 deg and are shown in
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Table 2 Mach 6 waverider
stability derivatives

Coefficient Piston theory

cxc,,,
c*,cxcx..
LID
cm
C,,,

c,miĉ
Yfic,,

c,,,
CY»c,Pc,,,,
Cy,
c,r
Cnr

-0.037
-0.792 rad-1

0.190rad-'
-0.003
-0.043 rad-1

12.2
0.009
0.190 rad- '
-0.449 rad"1

-0.268 rad-'
0.191 rad-1

-0.079 rad-1

0.191 rad-1

-0.229 rad-1

-0.00035 rad-1

-0.079 rad-1

-0.00035 rad-1

-0.176 rad-1

Table 2. The e.g. location, given by Eq. (4), is behind the
aerodynamic center that is at approximately (*c g /c) = I . As
a result, there is a nose-up pitching moment, and Cma indicates
a negative pitch stiffness. However, the damping-in-pitch
coefficient Cmtl is negative, and remains negative for all po-
sitions of (jccg /c). The effective dihedral C//8 is positive as
expected for a configuration with anhedral. The wing has
negative yaw stiffness as can be seen from the negative value
of C,,0. This is due to the fact the e.g. is placed so far back
in the caret-wing.

Conclusions
Linear piston theory has been used to calculate the longi-

tudinal and lateral stability derivatives for a caret-wing at
hypersonic Mach numbers. The analysis has covered the on-
design flight condition as well as flight Mach numbers above
the design Mach number. Closed-form analytical expressions
are given for the derivatives because of the simplicity of the
caret-wing geometry. Comparison to previous analytical and
experimental work done on longitudinal stability shows good
agreement.

This work will be extended using numerical integration to
waverider shapes with more complex geometries. It is sus-
pected that the analytical sensitivities calculated from the closed-
form expressions above can be used in doing optimization of
these waverider shapes.
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